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Abstract. Quantum state diffusion provides a dynamics for the localization or reduction of a
quantum-mechanical wavepacket during a measurement or similar physical process. The essence
of this localization dynamics is captured in the classical theory presented here, which applies
to the common situation where the localization takes place over macroscopic distances and the
wave properties of the system are no longer relevant. It provides a picture of the localization
process in classical phase space, and a practical aid for computations on open quantum systems.
The theory is developed from classical Hamiltonian dynamics in phase space and the known
properties of localization. As an example it is used to illustrate how absorption by a screen
leads to quantum jumps. A derivation from quantum state diffusion using the Wigner function
is given in the companion paper.

1. Introduction—density localization theory

Quantum state diffusion plays two distinct roles. One is in practical computations on
open quantum systems [6–9] and the other is in providing a dynamics for the process of
measurement, thus removing the need for a separate measurement hypothesis in quantum
mechanics [10–16]. In both of these there is a clear need for a classical theory of localization.

Open quantum systems are important in many fields of physics, including quantum
optics, noise in proposed quantum computers and energy transfer systems in molecular
biology. Quantum state diffusion has proved its worth as a practical tool for computations
on open quantum systems, and localization has proved to be a crucial property of the method,
particularly when a moving basis is used [6, 7]. The classical theory of this paper provides
a picture and a possible computational aid for numerical modelling of systems in which the
total number of quantum basis states has to be large, yet ordinary classical mechanics cannot
be applied. It can also be used as a means of making a preliminary investigation of the
feasibility of a full quantum state diffusion computation, without a large initial commitment
of computer time.

In quantum state diffusion and some other approaches to quantum theory, the reduction,
collapse or localization of a wavefunction is a feature of a measurement, or similar
interaction of a quantum system with its environment. In ordinary quantum theory
the localization is not derived from the Schrödinger dynamics, but requires additional
assumptions which are part of the interpretation of quantum theory. In quantum state
diffusion theory (QSD) and similar theories, the localization is a dynamical process,
requiring additional stochastic terms in the wave equation. Detailed references are given in
the companion paper [1].
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1816 I C Percival and W T Strunz

In measurement theory, the density diffusion provides a simpler picture of localization
by measurement than QSD, in the common situations where the wave properties of the
quantum states are no longer relevant.

In a Stern–Gerlach experiment, the two spin states of a beam of atoms are separated
in space, and detected along two macroscopically distinct lines. The localization of each
atom produced by the detection process is to one or other of these lines, and so takes place
on a macroscopic scale. This is typical of quantum measurements, and suggests a classical
localization theory, which is illustrated by the simplified example of absorption by a screen
presented in section 9.

Hamiltonian dynamics can be derived as a classical limit of Schrödinger dynamics, but
it is usually treated as an independent theory in its own right. Here we show that the essence
of localization of quantum states in phase space can be treated similarly. It is captured in
a classical picture, which is also introduced directly as an independent theory. Physical
processes are easier to visualize in phase space than in Hilbert space. The properties of
density localization are obtained from the known properties of localization dynamics in
quantum state diffusion and similar theories. From these properties we obtain the basic
density diffusion equations, which are the classical limit of the quantum state diffusion
equations.

The classical theory of this paper was introduced and briefly discussed in [2]. The
phase-space representation and the semiclassical expansion of the Wigner function in QSD
are treated in detail in [1].

Quantum state diffusion is very different from ordinary classical Hamiltonian dynamics.
There are two features in particular that distinguish them. One is that in QSD matter
has wave properties, such as interference and diffraction, and the other is the property of
localization. The Schrödinger equation captures the first, but not the second. The density
localization theory introduced here captures the second but not the first. The relations
between the theories are illustrated in figure 1.

For simplicity the density diffusion theory of this paper is restricted to nonrelativistic
systems whose interactions with the environment are represented by Hermitian Lindblad

Figure 1. Relations between theories.
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operators in QSD. These include interactions with measurement apparatus and similar
interactions. In density diffusion theory they are represented by the corresponding Lindblad
dynamical variables. For simplicity we exclude dissipative processes, such as interactions
with a heat bath, that are represented by non-Hermitian Lindblad operators. For the same
reason we do not give a detailed derivation of the density diffusion theory from QSD. Both
of these are found in the companion paper [1].

Sections 2 and 3 introduce the basic properties of the densities of individual quantum
systems, whilst section 4 deals with ensembles of such systems. A basic density diffusion
equation is derived from some simple conditions in section 5, and it is generalized in
section 6. The following two sections provide measures of localization, entropy in section 7
and variance in section 8. Section 9 applies the theory to localization of the particles of
a beam that strikes a solid surface, providing a paradigm for quantum measurement, and
showing how quantum jumps can be derived from this classical version of quantum state
diffusion.

2. Classical systems and quantum densities

The state of a single classical system is represented by a point(q, p) in phase space, whereq
andp are vectors representing coordinate and conjugate momentum, each withd freedoms.
A single quantum system without its wave properties is represented here by aquantum
densityD(q, p), which is never negative.

The dynamics of a classical system is represented by a trajectory(q(t), p(t)) through
phase space. For Hamiltonian dynamics with HamiltonianH(q, p, t), the trajectory is
determined by Hamilton’s equation

(q̇, ṗ) = (∂H/∂p,−∂H/∂q). (2.1)

The probability of a state of an ensemble in classical statistical mechanics is represented
by an ensemble of points in phase space whose probability distribution isρ(q, p). When
the system is isolated, so that there is no interaction with the environment, the value of
ρ(q(t), p(t)) remains constant as the state moves along the trajectory following Hamilton’s
equations. We say that the phase point is carried by the Hamiltonian flow in the phase
space. The time dependence of the distributionρ(q, p) as a function of fixed points(q, p)
is given by the linear Liouville equation

dρ(q, p)

dt
= ∂ρ

∂q

∂H

∂p
− ∂ρ
∂p

∂H

∂q
. (2.2)

Quantum systems are different. A single electron, neutron or atom can be in two or
more places at once. This is clear from the evidence of two-slits and other interferometry
experiments. A quantum system cannot therefore be represented by a point in phase space.
However, a single quantum system in a pure state, but without its wave properties, can be
represented by a non-negative normalized densityD(q, p) such that∫

�

D(q, p, t) = 1 (2.3)

where
∫
�

represents an integral over all phase space.
For quantum particles we have to work with both densitiesD and distributionsρ in

phase space, and keep the distinction between them. For every density, dynamical variables
have density expectations, variances and covariances, but these must not be confused with
the corresponding quantities for the distributions. A density and a density expectation are
quantum properties of the system, even though their representation is classical.
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The densityD is not a probability distribution likeρ, although when there is no
localization it behaves like one. Quantum wave properties, such as interference and
diffraction, are not represented whereas localization properties are.

The densityD can be obtained from the Wigner distributionW by smearing it out over
phase-space volumes much larger than 2πh̄, but we have here a different approach.W
retains the wave properties, and shows structure on scales down to phase-space areas of ¯h

and below. It can be negative, whereas the densityD is always positive. The quantum
densityD has none of the characteristic wave properties such as interference and diffraction,
and shows structure only on larger scales. Just as in classical mechanics, phase-space regions
whose size in any two-dimensional phase subspace is around 2πh̄ or less are treated like
points. There are many types of phase-space distributions representing quantum systems,
some of which are more smeared out than others. The densityD is very smeared out.

In ordinary classical ray optics, where the scales are large compared with the wavelength
of light, the light intensity is a course-grained average. The rays are like classical trajectories
of particles moving in space. Ray optics is a good approximation on scales much larger
than a wavelength, but does not provide any information about wave properties such as
interference and diffraction.

The quantum densityD(q, p) in phase space is a course-grained average. Its dynamics
is made up of ordinary Liouville dynamics, together with the dynamics of localization,
which has no counterpart either in ordinary classical dynamics, or in classical ray optics.
Like its optical analogue, the dynamics of quantum densities is a good approximation on
scales much larger than a wavelength, but does not provide any information about quantum
wave properties.

The loss of the wave properties provides a classical picture of the physics of quantum
localization and also makes the analysis much simpler than for QSD . A particle in a beam
can be represented by a densityD that is spread throughout some volume of the beam,
which is often of macroscopic dimensions. It is also spread in momentum. A free electron
in a solid at room temperature is represented by a densityD distributed within the solid. An
electron in a beam which strikes the surface of the solid may be represented by a density
that is partly in the beam, and partly in the solid, an important case for us, analysed in
section 9.

A special density is the point density

D(q, p) = δ(q − q0, p − p0) = δ(q − q0)δ(p − p0) (2.4)

which represents a phase-space point on scales which are large compared with the Planck
volume.

Without localization, the densityD(q, p, t) satisfies the same classical Liouville
equation as the distributionρ(q, p, t) of the phase-space points of an ensemble of classical
systems. Localization introduces additional stochastic localization terms. Point densities are
already localized, so the localization has no effect on them, and they follow Hamiltonian
trajectories in phase space. For sufficiently strong localization, densities localize so much
that after a time they become indistinguishable from point densities, and then satisfy ordinary
classical dynamics. This classical picture has the same strengths and weaknesses as ordinary
classical dynamics. It no longer works on scales determined by Planck’s constant, and does
not represent the wave properties of material particles, which are treated in the companion
paper [1].

Localization is a stochastic process, so the quantum densityD(q, p, t) satisfies a
stochastic differential equation in time. The probability Pr(D) that there is a particular
densityD is represented by an ensemble of densities. This probability is a function of
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points in density space. It is a large space, like the Hilbert space of quantum mechanics,
but fortunately it is not used very much.

3. Quantum expectations and other properties of densities

The integrated value ofD over a regionα of phase space is a quantum weight, not
a probability, although it is related to a probability through the stochastic dynamics of
localization. Dynamical variables have expectations, given by averaging over the densities
or weights.

For densitiesD, expectations, quantum variances and quantum covariances are defined
just like the corresponding means, variances and covariances of classical probability
distributions.

For densityD, representing a pure quantum state, the weighted average of a dynamical
variableB is theexpectation

〈B〉 = 〈B〉D =
∫
�

D(q, p)B(q, p) (3.1)

where
∫
�

represents the integral over the entire phase space. The simplest example is the
normN(D) of D, which is the expectation of unity,

N(D) = 〈1〉 =
∫
�

D(q, p) · 1.
ForD to be the classical representation of a pure quantum state, the norm must always be
unity.

The square of the variation ofB around the expectation〈B〉 is the quantumvariance

σ 2(B) = σ(B,B) = 〈(B − 〈B〉)2〉 = 〈B2〉 − 〈B〉2 (3.2)

which is used in sections 5 and 8.
The ensemble localization3(B) of B is defined to be the inverse of the mean over the

ensemble of the quantum variance ofB:

3(B) = 1/Mσ 2(B). (3.3)

The quantumcovarianceof two dynamical variablesB andC is

σ(B,C) = 〈(B − 〈B〉)(C − 〈C〉)〉 = 〈BC〉 − 〈B〉〈C〉. (3.4)

For ordinary classical probability distributions, the covariance is a measure of the
correlation ofB andC, but for these densities it is a measure of the quantumentanglement
of B andC. Because of localization, the properties of entanglement are essentially different
from the properties of correlation. In fact it is primarily this property of entanglement
that makes quantum systems behave so strangely. Our use of ‘entanglement’ here is a
generalization of its normal use in quantum mechanics.

The density dispersion entropySD of a densityD is minus the mean of the logarithm
of the density:

SD = −〈lnD〉 = −
∫
�

D(q, p) lnD(q, p). (3.5)

It is a useful logarithmic measure of the dispersion of the densityD in phase space. The
more the density is dispersed throughout the space, the larger the entropy. The faster the
density localizes in phase space, the faster the entropy decreases, as shown in section 7.

The quantum dispersion entropy of [3] depends on a partition of the state space into
channels, but the density dispersion entropy is independent of any such partitions.
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4. Probability distributions and means

Like phase space points for open classical systems, phase space densities for open quantum
systems obey statistical laws. A quantum system which interacts with measuring apparatus
is open, and it is this type of interaction which concerns us.

Localization is a stochastic process. Given a single initial densityD, the future densities
cannot be predicted exactly, but they have a probability distribution Pr(D) defined over the
large space of all densitiesD. The distributionρ is defined in terms of the probabilities
Pr(D). If there is only one densityD(q, p) in the ensemble, thenρ(q, p) = D(q, p).
When there is more than one density, thenρ is an ensemble mean over densities:

ρ(q, p) =
∫
D

Pr(D)D(q, p) = MD(q, p) (4.1)

where the integral in the space of densities is always taken over all densitiesD. If
the probability distributionρ is derived from the distribution of densities P(D), then the
ensemble mean of the expectation for a dynamical variableB is

MB = M〈B〉 =
∫
D

Pr(D)〈B〉 =
∫
D

Pr(D)
∫
�

D(q, p)B(q, p). (4.2)

This will be called the ensemble mean, or even just ‘the mean’ ofB. Unlike the
expectation for a pure state it is a property of ensembles. In the special case when the
only significant densitiesD are point densities, thenρ is the usual phase space distribution
of phase points for the particles, and the ensemble mean is the usual ensemble mean of
classical statistical mechanics. We will show that the dynamics of localization tends to
make systems approach this special case.

This mean is linear inD. However, we will be particularly interested in the means
of variances, like Mσ 2(B), because they can be used to measure the mean localization
for an ensemble of densities. These are quadratic inD. Quadratics inD also appear in
the localization dynamics of densities, which is therefore nonlinear, unlike the Liouville
equation (2.2).

For quantum particles we have to work with both quantum densities and distributions
in phase space, and keep the distinction between them. The quantum density expectations,
variances and covariances must not be confused with the corresponding quantities for the
distributions. The quantum expectation and variance, like the density itself, is a quantum
property of the system, even though its representation is classical.

5. Diffusion of quantum densities

At first, suppose that the diffusion depends on a single dynamical variableL, corresponding
to a Hermitian Lindblad operator in QSD. This represents the localization of a dynamical
variablecL, wherec is a nonzero constant. There are many processes which can produce
such localization, including the measurement of a dynamical variablecL. The localization
for a given densityD increases as the varianceσ 2(L) decreases. The ensemble localization
3(B) is a direct measure of localization for the whole ensemble. When it increases, we
can say with confidence that localization is taking place.

The fundamental quantum density diffusion equations which localize the densities need
to satisfy a number of reasonable conditions. The simplest possible linear equation satisfies
all the conditions except the normalization condition, which can easily be retained by
introducing a quadratic normalization term. A number of important results follow.

The first two are conditions on the densityD itself. They are
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(Co1) the norm N(D) of D is conserved;
(Co2) the non-negativity ofD is preserved.
The rest are conditions on the mean, variance and localization of dynamical variables,

when the localization is controlled by a single ‘Lindblad’ dynamical variableL(q, p). Their
choice is guided by the properties of dynamical variables in QSD. The dynamical variable
B(q, p) is arbitrary.

(Co3) The ensemble mean of anyB remains constant.
(Co4) The dynamical variablecL localizes for all real nonzeroc.
The only condition that may be surprising is (Co3), which is not true for QSD. However,

in QSD, only dynamical variables which do not commute withL change their mean values,
and in the classical limit of density diffusion theory the commutator goes to zero.

To obtain the density diffusion equations, first assume for simplicity an initial ensemble
at timet with only one densityD(t). At later times the ensemble will have many densities.

Because of (Co2),D(t) is real for all times, so the fluctuations must be real. Real
fluctuations are denoted dw = dw(t), where

Mdw(t) = 0 M(dw(t))2 = dt M(dw(s)dw(t)) = 0 (s 6= t). (5.1)

Let M be the mean over these fluctuations, as usual. The simplest nontrivial diffusion
equation for a densityD which includes the Lindblad dynamical variableL and the
fluctuation dw is

dD = LDdw (trial equation). (5.2)

This equation is linear inD, but it cannot be correct, because the norm is not conserved:

dN(D) = 〈L〉 dw. (5.3)

This can be rectified by subtracting the expectation of〈L〉 from L, giving

dD = (L− 〈L〉)D dw. (5.4)

This is the simplest density diffusion equation.〈L〉 is linear inD, so the right-hand side
of the evolution equation is quadratic inD, and because it is nonlinear, the densityD(q, p)
cannot be a probability distribution. The expectation〈L〉 depends on the value ofD(q, p)
in all regions of phase space for which it is not zero. So the change inD depends on its
value in all these regions. This usually means that the evolution is nonlocal, as quantum
localization is known to be.

So this density diffusion equation is nonlinear inD and nonlocal.
We now demonstrate that the solution of (5.4) satisfies all the conditions (Co1)–(Co4).
For the normalization condition (Co1),

dN = d
∫
�

1 · dD =
∫
�

(L− 〈L〉)D dw

= 〈(L− 〈L〉)〉 dw = 0. (5.5)

For (Co2), if the value ofD(q, p) at any point(q, p) is zero, then it remains unchanged,
so by continuityD cannot pass the value zero.

For (Co3), the change in the expectation of an arbitrary dynamical variableB is

d〈B〉 =
∫
�

B dD

=
∫
�

(B(L− 〈L〉)D dw = 〈(B(L− 〈L〉)〉 dw
= σ(B,L)dw (5.6)
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so for arbitraryB,

M d〈B〉 = 0 (5.7)

which confirms (Co3).
For (Co4), we need particular cases of (5.6) and (5.7) forB = L andB = L2. These

are

d〈L〉 = σ 2(L) dw M d〈L2〉 = 0. (5.8)

We also need the Itô differential of a product, which is

d(xy) = dx · y + x dy + dx · dy (5.9)

so the ensemble mean of the change in the variance ofL is

M dσ 2(L) = M d〈L2〉 −M d(〈L〉2)
= −M((d〈L〉)2)
= −M(σ 2(L)2) dt (5.10)

from equation (5.8).
So the mean of the quantum variance ofL decreases unless it is already zero, and the

same applies tocL for nonzeroc. A Lindblad dynamical variableL of density diffusion
theory is itself localized.

It also localizes any dynamical variableB for which the covarianceσ(B,L) is not zero.
From equation (5.6), for arbitraryB,

M dσ 2(B) = −M(〈B〉)2 = −[σ(B,L)]2 dt (5.11)

from which the result follows. SoL deserves the name of ‘localizer’.

6. Generalization

A general density diffusion equation has a HamiltonianH and many localizersLj with their
corresponding fluctuations dwj :

dD = {D,H } +
∑
j

(Lj − 〈Lj 〉)D dwj (6.1)

where{D,H } is the usual Poisson bracket, and the fluctuations dwj are independent and
normalized to dt so that

M dwj = 0 M dwj dwk = δjk dt. (6.2)

These orthonormal fluctuations dwj are not unique. Any orthogonal transformation
gives an equivalent set of orthonormal fluctuations dwj =

∑
k Ojk dw′k. It is useful to

think of these as thesamevector fluctuation in the fluctuation space, but in a different
representation.

The localizersLj may also be considered as a vector, in the space of dynamical variables.
The orthogonal transformationLj =

∑
k L
′
k(O

−1)kj gives a new set of localizers, and it
follows that the equation

dD = {D,H } dt +
∑
k

(L′k − 〈L′k〉)D dw′k (6.3)

is the same equation as (6.1). To preserve the density diffusion equations, an orthogonal
transformation of the fluctuations must be complemented by an inverse orthogonal
transformation of the localizersLj . Since dw′k is just a set of orthonormalized differential
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fluctuations, they could be replaced by the original dwk, which shows that the density
diffusion equations are independent of the representation inL-space.

In particular, if theLj aren linearly dependent localizers, with anm-dimensional space
of linearly independentL, then there is an orthogonal transformation to a representation in
which n − m of them are zero and the remainingm of theLj are independent. The zeros
can be ignored so we can always assume that the localizers are linearly independent.

The density diffusion equations are invariant under orthogonal transformations in the
localizer space. AnyL′ of the formL′ =∑ cjLj with

∑
j |cj |2 = 1 can be considered as

one of the localizers, as in section 8. So equation (6.1) with linearly independent localizers
is the general density diffusion equation.

See [1] for a derivation of (6.1) from the QSD equations, and [4] for the corresponding
transformation theory for QSD.

In the laboratory the density of a particle such as an electron may be partly in a vacuum
and partly absorbed in one of a number of solid objects. We can suppose that the vacuum
and the objects divide position space into regionsα. Frequently the form of the density
within each region is of no importance, we are only interested in the weight for each region,
given by integrating the position-space density over the whole region. For simplicity we
suppose that the localization variableL in each region is uniform.

The phase-space theory is just as simple and more general, so we derive the diffusion
equations for the discrete set of weightsWα given by integrating a phase-space densityD

over regionsα,

Wα =
∫
�

PαD (6.4)

wherePα is the characteristic function or projector which is 1 inside and 0 outside the region
α. We deliberately choose a notation that highlights the parallel with the corresponding
theory for projectors in QSD, which is treated in [3]. The expectation of the projector is

〈Pα〉 =
∫
�

DPα = Wα. (6.5)

As before we start with the simplest case of a wide open system with a single localizer

L =
∑
α

`αPα (6.6)

whose expectation is

〈L〉 =
∑
α

`αWα (6.7)

giving the density diffusion equation

dD = (L− 〈L〉)D dw. (6.8)

The change of the weight dWα is then

dWα =
∫
�

Pα dD =
∫
�

Pα(L− 〈L〉)D dw = (`α −
∑
β

`βWβ)Wα dw

= (`α − 〈`〉)Wα dw (6.9)

where by definition

〈`〉 = 〈L〉 =
∑
β

`βWβ. (6.10)
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The equations generalize directly to the case of many localizersLj as

dWα =
∑
j

( j̀,α − 〈 j̀ 〉)Wα dwj (6.11)

which is the stochastic diffusion equation for the weights.
The special case of one localizer for each region applies, for example, to the case of

position-space localization. In that case we can label the localizers withα. They are

Lα = `αPα so j̀,α = δjα`α (6.12)

and the density diffusion equations become

dWα =
(
`α dwα −

∑
β

〈`β〉 dwβ
)
Wα. (6.13)

Note that the Hamiltonian evolution has not been included in this generalization. A
particular case with Hamiltonian evolution included is given in section 9.

7. Density entropy decreases

Entropy is a natural measure for the spread of a probability distributionρ of classical
systems in phase space. It can be used similarly to measure the spread of the quantum
densityD.

The entropySD of a densityD is defined as

SD = −
∫
�

D lnD. (7.1)

To obtain changes inSD with time, we need changes in the integrand, which requires the
expansion of lnD up to second order inD. It is given by

d(D lnD) = dD · (1+ lnD)+ (dD)2/(2D). (7.2)

Using this and MdD = 0, we have, using the orthonormality of the fluctuations, that

M dSD = −
∫
�

(dD)2/(2D) = − 1
2

∫
�

∑
j

(Lj − 〈Lj 〉)2D = − 1
2

∑
j

σ 2(Lj ). (7.3)

We can think of
∑
j σ

2(Lj ) as the variance of the vector localizerL = {Lj }.
The Hamiltonian evolution does not change the density along the classical paths, so it

makes no contribution to the change in the entropy of the density. So unless the variances
are all zero, and the density is confined to a subspace of the phase space in which all the
Lj are constant, the entropy of the density alwaysdecreases. This is the density entropy
theorem.

Since localization tends to concentrate the density in the phase space, it is not surprising
that the entropy always decreases as a result of the localization. This is in contrast to the
usual idea as to how an entropy should behave. It is one of the remarkable properties of
the observed localization of matter in a quantum measurement.

Since the probability distributionρ remains constant along the Hamiltonian trajectories,
the distribution entropy

S = −
∫
�

ρ ln ρ (7.4)

remains constant. We cannot use the decrease in entropy to gain useful work, because the
loss of entropy of the densities for each member of the ensemble is cancelled by the increase
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in the distribution entropy which results from the fluctuations. The net result is a constant
distribution entropyS. If there is a dissipative interaction with the environment, which we
do not consider here, the distribution entropy does not remain constant, but increases.

The second law of thermodynamics is aboutρ, not aboutD, and is not violated by
the theorem. No experimenter nor engineer can predict the values of the random variables
dw(t), and so they cannot predict which of the densitiesD of the ensemble is going to
appear. Without this knowledge it is not possible to take advantage of the decrease in
entropy of the densities of pure states.

For chaotic systems with weak localization, the entropy density theorem can be
deceptive. According to the theorem, the regions of phase space in which the density
is large decrease in volume, but according to chaos theory, they become stretched, folded
and squeezed. The result can be that the regions of high density become small, but dispersed
over much of the chaotic region.

It is for this reason that in the next section, the localization theorem is for wide open
systems, in which the effect of the Hamiltonian is negligible.

8. Localization for wide open systems

In wide open systems the effect of the Hamiltonian is negligible in comparison with the effect
of the localizers. The theory of wide open systems is more useful than one might expect,
since interaction representation can often be used to remove the effect of the Hamiltonian.

Suppose that there are manyLj , and letB,B ′ be arbitrary dynamical variables, not
necessarily connected with theLj in any way. By using the same methods as in section 5,
it is easy to show that conditions (Co1)–(Co3) are satisfied for wide open systems when
there are many localizers.

For (Co4) it is slightly more complicated. For an arbitraryB,

d〈B〉 =
∫
�

∑
j

(B(Lj − 〈Lj 〉) dwj =
∑
j

σ (B,Lj ) dwj . (8.1)

The mean change in the covariance ofB,B ′ is

M dσ(B,B ′) = −M d〈B〉 d〈B ′〉 = −M
∑
jk

σ (B,Lj ) dwj σ(B,Lk) dwk

= −M
∑
j

σ (B,Lj )σ (B
′, Lj ) dt. (8.2)

Two special cases of this result are particularly useful. WhenB = B ′,
M dσ 2(B) = −M

∑
j

[(σ (B,Lj )]
2 dt (8.3)

which is minus a sum of squares. Any dynamical variable therefore localizes, unless its
covariance withall the localizers is zero.

Specializing further, supposeL′ is a localizer, andB = B ′ = L′. In a basis in which
L′ = L1, we have

M dσ 2(L′) = −M
∑
j

σ (L1, Lj )
2 dt 6 −(Mσ 2(L′))2 dt. (8.4)

Now suppose thatX is any quantity defined for each member of the ensemble. The
ensemblevariance62(X) is never negative, so

06 62(X) = M(X2)− (MX)2 −MX2 6 −(MX)2. (8.5)
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PuttingX = σ 2(L′) we obtain

d(Mσ 2(L′)) = M dσ 2(L′) 6 −M(σ 2(L′))2 dt 6 −(Mσ 2(L′))2 dt. (8.6)

The ensemble localization ofL′ is defined in (3.3) as the mean of the inverse of the
variance, so

d3−1/dt 6 −32 d3/dt > 1 (8.7)

and the localization of a localizer increases linearly with timet or faster. There is a similar
result for any dynamical variable in the localizer space, with a possible external positive
constant.

When the localization increases, the variance decreases. Unlike the entropy of the
density, for a system that is open but not wide open, the variance of a dynamical variable
can be increased as a result of the Hamiltonian evolution. For example, a densityD of
a free particle with a spread of momentum and no localizer has a position variance that
increases linearly with time. In chaotic systems variances increase exponentially.

So for systems with nonzero Hamiltonians and localizers there is often competition
between them. When the localization is sufficiently strong, the density localizes to a small
region around a phase point which then moves in phase space like the phase point of the
simple Hamiltonian system. When the localization is very weak, the result depends on the
Hamiltonian. Except for special cases, for example when there is a single localizer, which is
conserved by the Hamiltonian, integrable systems localize. Chaotic systems were discussed
above and in section 7.

9. Localization of a particle in a medium

The system of this section has also been treated using QSD and projection operators in [5].
The medium can be a solid, liquid, gas or vacuum. The particle is the system and

the medium is the environment, which is treated as uniform, so the rate of localization is
independent of the position of the particle within it. For the vacuum it is supposed to be
zero. For many different media, each medium occupies a volume labelledα, which includes
the whole of the momentum space and a restricted part of position space. The theory of
section 6 can be used, in which the localization into different regions is expressed in terms
of weightsWα. The localization rate can depend on the momentum of the particle, but for
simplicity we will neglect this dependence, so the momentum dependence of the distribution
plays no role, and we can use densitiesD(r), regionsα, and the corresponding weightsWα

that depend on the three-dimensional positionr alone.
The more interesting cases are those for which the system is not wide open, and

the Hamiltonian has a significant effect. This holds for laboratory measurement of the
properties of quantum systems, that is, quantum measurement. The principle is illustrated
by a truncated uniform beam of unit length and velocity, containing a single particle with
unit densityρ0. The beam strikes a solid surface at timet = 0, which absorbs and localizes
it in unit time. The distributionρ for the ensemble is sketched in figure 2. We want to
find the properties of the weightsWα whose means are probabilitiesPα. The statistical
properties are represented by an ensemble of such systems. The densityD0 of each particle
of the ensemble is uniform before it strikes the surface, but unlikeρ0 it is not unity, because
of the localization. Suppose the regions of position space are labelled byα = 0 for the
vacuum andα = 1 for the solid.
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Figure 2. Truncated one-particle beam striking a solid surface. The hatched regions sketch the
distributionρ (a) before, (b) during, and (c) after entry.

All integrals
∫

are integrals over position space, so the ensemble probabilitiesP and
the individual particle weightsWα are

P0 =
∫

beam
ρ = 1− t W0 =

∫
beam

D

P1 =
∫

solid
ρ = t W1 =

∫
solid

D

(9.1)

with the properties

MWα = Pα
∑
α

Wα =
∑
α

Pα = 1. (9.2)

Because of localization, the weightW0 may be greater or less thanP0. The densityD0 does
not change as a result of the Hamiltonian dynamics, but the length of the beam is 1− t , so

dW0 = −D0 dt (Hamiltonian). (9.3)

W1 increases at the same rate.
We will show that the weights are nearly always close to 0 and 1, and change suddenly

from one to the other. That is, that the weights change in jumps. The dispersion of the
weightsW0 andW1 is conveniently measured by the quantum variance ofα, that is

σ 2(α) = 〈α2〉 − 〈α〉2 = W1−W 2
1 = W1W0. (9.4)
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This is small for strong localization, when the weights are close to 0 or 1, larger otherwise.
Before t = 0 and aftert = T the quantum varianceσ 2(α) is zero. We now show that its
ensemble mean is very small at all times.

Since the density diffusion is uniform in the solid, it can be represented by

L(r) = `1 (solid)

L(r) = 0 (beam), so

〈L〉 = `1W1

(9.5)

where`2
1 is a rate which is determined by interactions of the particle within the solid, and

is therefore very fast in comparison with macroscopic rates.
From equations (6.11) and (9.5), the change inW0 due to density diffusion in the solid

is therefore

dW0 = −〈L〉W0 dw = −`1σ
2(α) dw (diffusion). (9.6)

Adding the Hamiltonian and diffusion contributions we get

dW0 = −D0 dt − `1σ
2(α) dw. (9.7)

Because of the normalization condition in (9.2) there is no need for a separate equation
for W1.

The change in the mean quantum variance ofα is

M dσ 2(α) = M[(1− 2W0) dW0− (dW0)
2]

= M(2W0− 1)D0 dt − `2
1M[σ 2(α)]2 dt

6 MD0 dt − `2
1M[σ 2(α)]2 dt (W0 6 1)

= dt − `2
1M[σ 2(α)]2 dt (MD0 = 1). (9.8)

The first Hamiltonian term increases the mean variance, and the second density diffusion
term tends to decrease it. Replacing the inequality by an equality gives the boundary, which
is obtained analytically, giving

M
dσ 2(α)

dt
6 `−1 1− e−2`1t

1+ e−2`1t

< `−1. (9.9)

Since`2
1 is a rate determined by the interactions of the particles within the solid, which is

much faster than the rate at which the beam enters the solid,σ 2 is always much less than
unity. SoW0 is nearly always very close to 1, its value att = 0, or to 0, its value att = T .
Thus it must change very quickly, a good approximation to an instantaneous jump.

For a single system of the ensemble, the particle remains in the beam and then jumps
suddenly into the solid. This is what happens when a quantum particle with an extended
matter wave strikes a solid surface, which is justified by a verbal argument in the usual
interpretation of quantum mechanics. Here it is derived from the dynamics of density
diffusion, as an approximation to quantum state diffusion.

This theory applies generally to systems in which the interaction of the particle with a
medium or measuring apparatus is fast, for example in a measurement of a state of a quantum
system. This shows by means of a simple example how the quantum jumps which appear in
quantum measurements can be derived from quantum-density diffusion. It is also an example
of localization for which the wave properties of the quantum system are unimportant.
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10. Discussion

Quantum systems appear to spread out like waves and then become localized like particles.
In quantum state diffusion the localization is a stochastic physical process in which the
states of individual quantum systems obey a nonlinear QSD equation and the state of an
ensemble of quantum systems obeys a linear master equation. The quantum systems of
QSD have both wave and localization properties. In this picture a Schrödinger equation is
an approximation to a QSD equation in which the localization is neglected. It is a good
approximation when the quantum system has a negligible effect on classical systems, but
not during measurement, or for similar processes.

The density diffusion theory of this paper is an approximation to QSD in which the
wave properties are neglected. It is a good approximation when the quantum system is
interacting so strongly with its environment that its coherence no longer has any significant
effect and its wave properties are almost completely lost. Such strong interactions occur
when simple quantum systems interact with complicated systems such as solids, liquids and
gases. They also occur when signals from quantum systems are amplified and when they
are recorded, as in the formation of a photographic image [5]. They may also result from
interaction of a quantum system with a heat bath.

In density diffusion the state of a quantum system is represented by a density in phase
space, with a nontrivial combination of Hamiltonian and localization processes. This is a
new kind of nonlinear classical dynamics whose properties are not yet fully worked out.

Usually localization depends on momentum as well as position, but where the
dependence on momentum is relatively unimportant, the process of localization can be
visualized in ordinary position space, as in the example of a particle in a beam striking a
solid surface presented in section 9.

Density diffusion theory provides a new theoretical tool for the study of the dynamics
of localization in quantum systems, and its relative simplicity opens up the possibility of
studying more complicated or more subtle localization processes where the wave properties
of Schr̈odinger dynamics and QSD may not be important.
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